Unsupervised Morphological Relatedness

نویسندگان

  • Ahmed Khorsi
  • Abeer Alsheddi
چکیده

Assessment of the similarities between texts has been studied for decades from different perspectives and for several purposes. One interesting perspective is the morphology. This article reports the results on a study on the assessment of the morphological relatedness between natural language words. The main idea is to adapt a formal string alignment algorithm namely Needleman-Wunsch’s to accommodate the statistical characteristics of the words in order to approximate how similar are the linguistic morphologies of the two words. The approach is unsupervised from end to end and the experiments show an nDCG reaching 87% and an r-precision reaching 81%. Keywords—Arabic Language; Computational Linguistics; Morphological Relatedness; Semitic Morphology; Unsupervised Learning

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Unsupervised Learning of the Morpho-Semantic Relationship in MEDLINE

Morphological analysis as applied to English has generally involved the study of rules for inflections and derivations. Recent work has attempted to derive such rules from automatic analysis of corpora. Here we study similar issues, but in the context of the biological literature. We introduce a new approach which allows us to assign probabilities of the semantic relatedness of pairs of tokens ...

متن کامل

TrWP: Text Relatedness using Word and Phrase Relatedness

Text is composed of words and phrases. In bag-of-word model, phrases in texts are split into words. This may discard the inner semantics of phrases which in turn may give inconsistent relatedness score between two texts. TrWP , the unsupervised text relatedness approach combines both word and phrase relatedness. The word relatedness is computed using an existing unsupervised co-occurrence based...

متن کامل

Study of genetic diversities and relatedness of Iranian citrus genotypes using morphological and molecular markers

Having knowledge about genetic relationships among accessions is necessary for developing breeding strategies to produce improved cultivars. In present study, genetic diversity and inter-relationship among 29 genotypes of citrus were comparatively analyzed using morphological and RAPD markers. Significant variability was observed among citrus genotypes for 61 quantitative and qualitative morpho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016